Permutation Tableaux and the Dashed Permutation Pattern 32–1

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permutation Tableaux and the Dashed Permutation Pattern 32-1

We give a solution to a problem posed by Corteel and Nadeau concerning permutation tableaux of length n and the number of occurrences of the dashed pattern 32–1 in permutations on [n]. We introduce the inversion number of a permutation tableau. For a permutation tableau T and the permutation π obtained from T by the bijection of Corteel and Nadeau, we show that the inversion number of T equals ...

متن کامل

Permutation tableaux and permutation patterns

Lauren Williams (joint work with Einar Steingrímsson) We introduce and study a class of tableaux which we call permutation tableaux; these tableaux are naturally in bijection with permutations, and they are a distinguished subset of the " Le-diagrams " of Alex Postnikov. The structure of these tableaux is in some ways more transparent than the structure of permutations; therefore we believe tha...

متن کامل

Bijections for permutation tableaux

In this paper we propose a new bijection between permutation tableaux and permutations. This bijection shows how natural statistics on the tableaux are equidistributed to classical statistics on permutations: descents, RLminima and pattern enumerations. We then use the bijection, and a related encoding of tableaux by words, to prove results about the enumeration of permutations with a fixed num...

متن کامل

Linked Partitions and Permutation Tableaux

Linked partitions were introduced by Dykema in the study of transforms in free probability theory, whereas permutation tableaux were introduced by Steingŕımsson and Williams in the study of totally positive Grassmannian cells. Let [n] = {1, 2, . . . , n}. Let L(n, k) denote the set of linked partitions of [n] with k blocks, let P (n, k) denote the set of permutations of [n] with k descents, and...

متن کامل

Permutation Tableaux and the Asymmetric Exclusion Process

The partially asymmetric exclusion process (PASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites. It is partially asymmetric in the sense that the probability of hopping left is q times the probability of hopping right. In this paper we prove a close connection between the PASEP m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2011

ISSN: 1077-8926

DOI: 10.37236/598